

Assessing glaciogenic seeding impacts in Australia's Snowy Mountains: an ensemble modeling approach

Sisi Chen¹, Lulin Xue¹, Sarah A. Tessendorf¹, Thomas Chubb², Andrew Peace², Suzanne Kenyon², Johanna Speirs², Jamie Wolff¹, and Bill Petzke¹

Correspondence: Sisi Chen (sisichen@ucar.edu)

Abstract.

Winter precipitation over Australia's Snowy Mountains provide crucial water resource in the region. Cloud seeding has been operational to enhance snowfall and water storage. This study presents an ensemble simulations to assess cloud seeding impacts across diverse meteorological conditions and evaluate associated model uncertainties. Nine seeding cases from 2016 to 2019 were simulated, with 18 ensemble members varying initialization datasets and model configurations. Two main storm categories were studied (convective vs stratiform). Results demonstrate that simulated seeding efficacy highly depends on meteorological conditions. Stratiform cases exhibited consistent precipitation enhancement, while convective cases showed reductions and downwind shifts of precipitation. Significantly inter-member variability was also observed. Notably, BARRA-driven simulations show better representation in supercooled liquid water. Aerosol and PBL scheme variations also contributed to ensemble spread. The findings demonstrate the value of ensemble modeling for reliable cloud seeding assessment. Key areas are also identified for future investigations in winter cloud seeding.

1 Introduction

20

Glaciogenic cloud seeding has been implemented globally and in operational use for decades to enhance precipitation in winter, primarily by increasing snowfall. The process introduces artificial ice-nucleating particles (INPs), such as silver iodide (AgI), into clouds containing supercooled liquid water (SLW) to stimulate the ice nucleation. These formed ice particles can then grow and precipitate, augmenting water resources and snowpack (Flossmann et al., 2019; Manton and Warren, 2011). This method is particularly effective in winter cloud systems over mountainous terrain, where moist air is lifted and cooled, forming clouds rich in supercooled liquid water (SLW). The presence of SLW in these winter orographic clouds provides an ideal environment for AgI particles to act as effective INPs at temperatures between $-5^{\circ}C$ and $-20^{\circ}C$ (Marcolli et al., 2016).

Winter orographic cloud seeding differs fundamentally from summertime convective cloud seeding, which targets convective clouds with strong updrafts and significant vertical development. Winter orographic seeding releases efficient INPs (normally AgI particles) into the clouds. This mode of seeding operates in more stable and predictable meteorological conditions (Rasmussen et al., 2018), such as in stratiform cloud systems. Recent field campaigns, such as the Seeded and Natural

¹NSF National Center for Atmospheric Research (NCAR), Boulder, CO, USA

²Snowy Hydro Ltd., Cooma, NSW, Australia

35

45

50

Orographic Wintertime clouds—the Idaho Experiment (SNOWIE), have provided unambiguous evidence of the efficacy of winter orographic cloud seeding. Observations from SNOWIE demonstrated that AgI seeding led to enhanced snowfall rates and accumulation, confirming the fundamental winter orographic cloud seeding hypothesis (Tessendorf et al., 2019; French et al., 2018).

The Snowy Mountains in Southeast Australia offer distinct opportunities and challenges for winter orographic cloud seeding. The area serves as a vital water catchment, supporting hydroelectric power generation, irrigation, and tourism. Cloud seeding experiments were carried out during the latter half of the 20th century with generally positive results (Smith et al., 1963; Smith, 1967; Shaw and King, 1986; Warburton and Wetzel, 1992). Recognizing the importance of snowpack and potential benefits of enhancing snowfall, wintertime glaciogenic cloud seeding has been operational over the area since 2004 by Snowy Hydro Ltd. (SHL) (Huggins et al., 2008; Manton and Warren, 2011). Ground-based seeding has been implemented, releasing AgI particles from ground generators strategically located on the upwind slopes of the mountains.

Past statistical evaluations of SHL's randomized seeding program demonstrated positive impacts on precipitation over the target area, with mean precipitation increases of ~ 0.37 mm per seeding event during 2005–2009, and increases between 0.47 mm to 0.55 mm per event during 2010–2013 (Manton et al., 2017). Despite these promising results, assessing seeding impacts of individual events remains challenging due to significant uncertainties. In addition, the Southern Hemisphere environments are characterized by low aerosol and INP concentrations due to low levels of anthropogenic and terrestrial emissions compared to the Northern Hemisphere (Huang et al., 2017, 2021). Moreover, studies indicate that clouds over the Southern Ocean and the surrounding land masses exhibit a higher prevalence of SLW, even at colder temperatures, compared to their Northern Hemisphere counterparts (Morrison et al., 2011; Hu et al., 2010). These unique conditions enhance the seeding potential, as more liquid water is available for conversion into ice crystals with less competition from pre-existing natural INPs. However, the unique conditions in the Snowy Mountains, also introduce challenges for modelling precipitation processes and the seeding impact compared to Northern Hemisphere environments. For example, there are uncertainties in respect to riming and collision-coalescence processes with lower atmospheric pollution and whether the model parameterizations that are validated for the Northern Hemisphere are transferable to precipitation processes in the Snowy Mountains. Addressing these uncertainties and challenges requires detailed numerical modeling to simulate cloud seeding under various atmospheric conditions and systematic and comprehensive assessment of the impacts.

Previous work by Chen et al. (2023) used the WRF-WxMod® model to simulate cloud seeding over the Snowy Mountains. The study focused on three seeding cases during different synoptic weather events in the 2018 winter season, and demonstrated that WRF-WxMod® can realistically represent cloud structures, LWP, and precipitation patterns and amount in both natural and seeded scenarios. Sensitivity analyses revealed significant variability in model responses due to factors such as aerosol concentrations, ice nucleation efficiencies, and initialization datasets. The study also indicates a weaker model sensitivity to the secondary ice production efficiency due to Hallett-Mossop (HM) processes. Modifying the efficiency only imposed negligible impacts on clouds and precipitation compared to the effect of changing the IN schemes. This is most likely due to the fact that clouds contained a large amount of supercooled liquid but very little graupel, which is not enough to activate the secondary ice production processes. Importantly, no single model configuration optimally represented all cases, with com-

plex interaction between seeding particles, clouds, and the large-scale meteorological conditions. These findings highlighted the necessity of employing an ensemble modeling approach to more comprehensively assess seeding impacts and capture the range of uncertainties inherent in the simulations. An ensemble approach allows for the exploration of multiple model configurations and input datasets, providing a probabilistic framework that can account for variations in initial conditions, physical parameterizations, and other key factors influencing model outputs.

Building upon the work by Chen et al. (2023), this study aims to develop an ensemble modeling framework to more systematically and comprehensively evaluate the impacts of glaciogenic cloud seeding in different winter weather regimes over the Snowy Mountains. Ensemble studies by Xue et al. (2022) for SNOWIE and Rasmussen et al. (2018) for the Wyoming Weather Modification Pilot Project (WWMPP) have demonstrated the effectiveness of this approach in simulating and quantifying the seeding impacts in North America. Their studies highlight the importance of ensemble methods in capturing the variability of seeding effects due to differences in initialization data, physical parameterizations, and atmospheric conditions. By adapting this approach and tuning it to be better suitable for wintertime conditions in the Snowy Mountains, we aim to provide a reliable, comprehensive, and systematic assessment of the cloud seeding impacts and knowledge of the model variability and uncertainty over the Southern Hemisphere environment. This work seeks to address the following objectives:

- 1. Evaluate the variability of seeding impacts, as simulated by WRF-WxMod ®, across different winter cloud conditions in Snowy mountains.
- 75 2. Assess the model sensitivities to different configurations in those conditions.
 - 3. Test the robustness of the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia, version 1 (Su et al., 2019, BARRA) as a new initialization dataset to drive WRF simulations.
 - 4. Determine a tailored ensemble modeling framework for the region by incorporating a diverse set of appropriate model configurations and driving datasets.

The paper is outlined as follows. The Model and Data Section will introduce the WRF-WxMod® model used for conducting simulations of the seeded and/or natural cloud processes, the case selections over the past decades, and observational datasets used for model validation. Ensemble simulation analysis of the natural precipitation and seeding impacts will be presented in the Results and Discussion section, followed by Summary.

2 Model and Data

2.1 The WRF-WxMod Cloud Seeding Model

WRF-WxMod® (pronounced "WRF weather mod") model extends the capabilities of the Weather Research and Forecasting (WRF) model (Skamarock et al., 2008) to simulate the microphysical processes associated with AgI seeding (Xue et al., 2013a, b). The model incorporates microphysical parameterizations for the release, dispersion, and nucleation of AgI particles, accounting for four ice nucleation mechanisms (deposition, condensation freezing, contact freezing, and immersion freezing) following the formulae of DeMott et al. (2010) and Meyers et al. (1992). AgI particles are treated as a single-mode lognormal distribution (with a mean diameter of $0.04 \ mm$ and a geometric standard deviation of 2) and can act as INPs or cloud condensation

100

105

115

120

sation nuclei (CCN) due to their insoluble components. They may also be scavenged by processes such as Brownian motion, phoretic forces, and turbulent collections. The model is capable of simulating seeding released from ground-based generators, ejectable flares and burn-in-place at cloud tops by aircrafts. Once released into the atmosphere, the AgI particles are transported by winds. As they disperse, they interact with existing cloud hydrometeors through various microphysical processes. These interactions facilitate the nucleation and growth of ice crystals, ultimately leading to the formation of different types of precipitating hydrometeors such as snow and graupel. Therefore, the model allows for a detailed investigation and quantification of how AgI seeding influences cloud microphysics and precipitation development.

In this study, we focus on ground-based seeding, as no airborne seeding operations were conducted over the area. Ground-based AgI generators are modeled as point sources positioned at operational sites within the simulation domain. The AgI emission rate was prescribed based on the actual generator operations in Snowy mountains, approximately $20.6 \ g/hr$, close to the emission rate (= $20.4 \ g/hr$) reported in Huggins et al. (2008). The model domain comprises two nested grids: 4-km outer domain encompassing Southeast Australia to capture the large-scale synoptic weather patterns and a 1-km inner domain focused on the Snowy Mountains catchment (Figure 1). The large outer domain allows for adequate spin-up of the upper wind area under the prevailing westerly winds in wintertime SE Australia. The finer resolution is critical for resolving the orographic effects and detailed cloud microphysical processes, and therefore the ensemble members only comprise the 1-km domain simulations.

2.2 Ensemble design

Building upon the sensitivity study of cloud seeding simulations over Snowy Mountains by Chen et al. (2023), we carefully selected the model configurations for our ensemble members to address the key model sensitivities identified in previous simulations to estimate the ensemble spread across different cases.

2.2.1 Initialization Datasets

In Chen et al. (2023), two different reanalysis datasets were used to drive the simulation: European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis v5 (ERA5, Hersbach et al., 2020) and National Centers for Environmental Prediction's (NCEP's) Climate Forecast System, version 2 (CFSFv2, Saha et al., 2014). It was found that the choice of initialization dataset contributed to the largest uncertainty in the simulations. Different reanalysis datasets provide varying large-scale atmospheric forcings due to differences in data assimilation methods and model physics. In this study we introduced the third initialization dataset, the 6-hourly Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia, version 1 (BARRA, Su et al., 2019) to improve the ability to discern relative strengths and weaknesses among the initialization datasets and enhance the representativeness of the ensemble members.

BARRA offers a comprehensive suite of gridded meteorological datasets covering Australia, New Zealand, and a significant expanse of SE Asian countries. The BARRA dataset boasts a higher spatial resolution compared to the commonly used global reanalysis dataset such as ERA5 ($\sim 31 km$) and CFSv2 ($\sim 38 km$), by providing a 12-km resolution whole-domain dataset (BARRA-R) and four additional convective-scale (1.5-km) nested domains centered on major Australian cities (BARRA-C,

BARRA-PH, BARRA-AD, and BARRA-TA, Su et al. 2021). In this study, the 12-km BARRA-R, which covered the entire continental Australia and the surrounding oceans, was used. Such enhanced spatial resolution allows BARRA to provide more detailed initial and boundary conditions for numerical simulation. Su et al. (2019) shows that BARRA-R shows reduced errors in 2 m temperature, 10 m wind speed, and surface pressure observations, compared to global reanalysis ERA-Interim and MERRA-2.

As this is the first time to our knowledge that BARRA has been used to drive WRF simulations, one of our goals is to demonstrate whether BARRA can serve as a reliable initialization dataset for WRF for simulating the winter orographic clouds and precipitation over the Snowy Mountains of Australia. Comparisons of simulations driven by ERA5, CFSv2, and BARRA-R against observations were conducted to evaluate the performance of each dataset.

2.2.2 Planetary Boundary Layer Schemes

Chen et al. (2023) only considered one planetary boundary layer (PBL) scheme in their study. However, their study indicated that seeding impacts can vary a lot under different atmospheric conditions, particularly in relation to atmospheric stability and wind profiles. This indicates that the seeding effects are sensitive to planetary boundary layer (PBL) processes, which not only influence turbulence, mixing, and the development of clouds, but also affects how seeding particles are transported and dispersed by the winds. Therefore, in the current study, four PBL schemes were used to encompass the uncertainties caused by PBL schemes: Mellor-Yamada Nakanishi and Niino Level 2.5 (MYNN, Nakanishi and Niino, 2009), Mellor-Yamada-Janjic (MYJ, Janjić, 1990), Quasi-Normal Scale Elimination (QNSE, Sukoriansky et al., 2005), and Yonsei University (YSU, Hong et al., 2006).

2.2.3 Aerosol background

Both monthly aerosol climatology and reduced CCN (pristine environment) will be included in the ensemble members. Chen et al. (2023) found that reducing the aerosol concentrations to 10% of the monthly climatology (denoted as 01CCN) in Thompson-Eidhammer scheme (Thompson and Eidhammer, 2014) enhanced warm rain processes in the natural (no seed) conditions. This enhancement led to a stronger phase conversion from liquid precipitation to ice precipitation in the seeded simulations. Since ice-phase hydrometeors, such as snow and graupel, have slower fall speeds compared to raindrops, this resulted in precipitation falling further downstream, effectively shifting the precipitation distribution. Due to a lack of in situ measurements to verify the CCN, droplets, and ice concentration, a range of CCN concentrations were considered to address the model uncertainty.

2.2.4 Ice nucleation schemes

155

Two ice nucleation schemes were considered (DeMott et al., 2010; Meyers et al., 1992, hereafter referred to as DeMott and Meyers Scheme, respectively) to take into account the uncertainties in the nucleated ice in the natural environment. Even though the seeding impacts on the precipitation amount reaching the ground remained similar over the target area, Chen et al. (2023)

160

175

180

185

found that changing the ice nucleation scheme effectively altered the amounts of liquid(ice)-phase precipitation reduction (increase) due to seeding. This suggests that, although the overall effects on precipitation change might be less sensitive, the microphysical processes are sensitive to the choice of ice nucleation parameterization. Including both schemes enabled us to examine how different representations and efficiencies of ice nucleation processes influence seeding impacts.

By carefully considering the extent of uncertainties to which the above-mentioned key parameters generated, we finalized 18 ensemble members to systematically explore these sensitivities, aiming to capture a comprehensive range of uncertainties inherent in modeling cloud seeding impacts. Each ensemble member represents a unique combination of aerosol conditions, ice nucleation processes, boundary layer dynamics, and initialization datasets. For each member, we conducted both SEED and NO SEED (control) simulations, allowing for direct comparison and quantification of seeding impacts on cloud structure, cloud/precipitation process rates, and the distribution and amount of precipitation at the surface. This approach enables us to assess the robustness of simulated seeding impacts under different winter environments and to identify conditions under which the model is most sensitive to specific parameters. The physics schemes and configurations considered in the ensemble members, expanded upon the case studies of Chen et al. (2023), summarized in Table 1. At the time the study was conducted, the BARRA reanalysis data covered the dates from January 1, 1990 through February 28, 2019, so cases after February 28, 2019 only consist of ERA5 and CFSv2 members.

2.3 Case Selection and Observational data

To systematically analyze the seeding impact, we classified the meteorological conditions of all past seeding Experimental Units (EUs) from the 2016-2019 seeding seasons into two main groups: one with an unstable environment associated with convective, deep clouds, high wind, and high precipitation (referred to as category 0), the other with a relatively stable environment associated with stratiform orographic clouds, calm wind, and weak precipitation (referred to as category 1). An EU is a 5 hour period during which a randomized seeding experiment was executed. Nine EUs were selected for this study: five in category 0 and four in category 1, allowing for a comprehensive evaluation of cloud seeding impacts under both conditions. Table 2 summarizes the nine EUs. For clarity, we will use case numbers (column one in Table 2) grouped by categories instead of EU numbers in the following sections. Our goal was to capture the variability in key cloud and precipitation properties through the ensemble approach and provide a robust assessment of seeding impacts in two distinct winter conditions.

To validate the model and evaluate the ensemble results, observational data collected during the seeding periods were used, including atmospheric soundings, radiometer measurements and precipitation from a network of all weather gauges. Table 3 summarizes the observational datasets, and locations of instrumentation are shown in Figure 1. Atmospheric soundings provide information on the vertical structure of the atmosphere including atmospheric stability and cloud depth. LWP measurement is a good proxy for supercooled liquid water (SLW) in winter clouds when most of the clouds are above freezing levels, and SLW is not only critical for natural ice processes, such as ice production and riming, but also a necessary condition for seeding particles to take effect. Therefore, accurate representation of the available SLW in the model in terms of amount and trend is essential for simulating the microphysical processes in natural and seeded environments. By comparing the model's LWP outputs with radiometer observations, we can assess the model's performance in capturing the key microphysical characteristics

Table 1. List of 18 ensemble configurations for each case. For each configuration, one control (no seed) simulation and one seed simulation were conducted. In total 18 control members and 18 seed members were run. The BARRA reanalysis data is only available up until 2019-02-28. Therefore, cases after this date only consist of ERA5 and CFSv2 members (i.e., 12 members).

Ensemble number	Ensemble configuration name	Driving Dataset	CCN concentration	IN scheme	PBL scheme
1	ERA5_CCN_DeMott_MYNN		Monthly climatology	DeMott	MYNN
2	ERA5_CCN_DeMott_MYJ		Monthly climatology	DeMott	MYJ
3	ERA5_CCN_DeMott_QNSE	ERA5	Monthly climatology	DeMott	QNSE
4	ERA5_CCN_DeMott_YSU		Monthly climatology	DeMott	YSU
5	ERA5_01CCN_DeMott_MYNN		10% climatology	DeMott	MYNN
6	ERA5_CCN_Meyers_MYNN		Monthly climatology	Meyers	MYNN
7	CFS2_CCN_DeMott_MYNN		Monthly climatology	DeMott	MYNN
8	CFS2_CCN_DeMott_MYJ		Monthly climatology	DeMott	MYJ
9	CFS2_CCN_DeMott_QNSE	CFSv2	Monthly climatology	DeMott	QNSE
10	CFS2_CCN_DeMott_YSU		Monthly climatology	DeMott	YSU
11	CFS2_01CCN_DeMott_MYNN		10% climatology	DeMott	MYNN
12	CFS2_CCN_Meyers_MYNN		Monthly climatology	Meyers	MYNN
13	BARRA_CCN_DeMott_MYNN		Monthly climatology	DeMott	MYNN
14	BARRA_CCN_DeMott_MYJ		Monthly climatology	DeMott	MYJ
15	BARRA_CCN_DeMott_QNSE	BARRA	Monthly climatology	DeMott	QNSE
16	BARRA_CCN_DeMott_YSU		Monthly climatology	DeMott	YSU
17	BARRA_01CCN_DeMott_MYNN		10% climatology	DeMott	MYNN
18	BARRA_CCN_Meyers_MYNN		Monthly climatology	Meyers	MYNN

of the clouds over the Snowy Mountains. Accumulated precipitation from gauges are used to verify how the model resolves the distribution and amount of precipitation on ground.

3 Simulated results and discussion

3.1 Comparison with Observations

3.1.1 Liquid Water Path

The LWP data, representing vertically integrated liquid water content, was collected from the radiometer measurement at the Cabramurra site (1500 m above sea level). The radiometer generally lies above freezing level ($< 0^{\circ}C$) for most cases, which makes the LWP measurements a good proxy for the presence of supercooled liquid water (SLW) in clouds. SLW is critical for both natural ice production and the effectiveness of glaciogenic seeding, which converts supercooled liquid to ice. Therefore

200

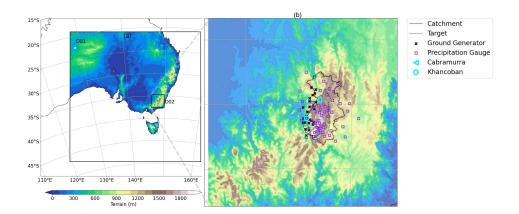
205

Table 2. Summary of the nine cases selected for simulations. Whether the case was seeded during the experimental unit (EU) period in the actual operations is indicated in the fourth column. For clarity, the case number, instead of EU number, will be referred for the rest of the paper. The case is named by the cloud category (0 for convective, 1 for orographic stratiform) followed by a unique index within that category.

Case	EU	Meteorological conditions	Seeding action	Simulated time for analysis (UTC)
0a	EU258		No seed	2016-06-23 18:00 – 06-24 02:00
0b	EU318	Windy, high precipitation,	Seed	2018-08-06 00:00 - 08-06 12:00
0c	EU319		No seed	2018-08-06 09:00 – 08-06 17:00
0d	EU331	convective and deep clouds	Seed	2019-05-28 20:00 – 05-29 04:00
0e	EU349		No seed	2019-08-09 06:45 – 08-09 15:00
1a	EU274	Law wind week	No seed	2016-08-20 05:00 – 08-20 13:00
1b	EU326	Low wind, weak precipitation, stratiform	No seed	2018-08-18 13:30 - 08-18 22:00
1c	EU327		Seed	2018-08-20 14:00 - 08-21 00:00
1d	EU352	orographic clouds	No seed	2019-08-10 07:00 – 08-10 12:30

Table 3. List of ground-based observational data used for model-observation comparisons. Locations of the sites are shown in Figure 1.

Measurements	Description	Locations
Sounding	Radiosondes suspended below weather balloons, provide ~ 3 hourly vertical profiles of temperature, relative humidity, wind speed, and wind direction.	Khancoban site
Radiometer	Vertically integrated liquid water path (LWP)	Cabramurra site
All weather precipitation gauges and heated/unheated (depending on elevation) tipping bucket gauges. Real-time "tips" recorded and post-processed to 10 minutes.		67 sites operated by Snowy Hydro in the Snowy Mountains


an accurate representation of SLW in the model is critical to accurately capture both natural and seeded clouds. Observations reveal that winter orographic clouds in the Snowy Mountains contain abundant SLW, with LWP values generally between $0.5-1.5\ kg\ m^{-2}$ (Figure 2), significantly higher than values measured in the Wyoming Weather Modification Pilot Project (WWMPP, Rasmussen et al., 2018) which were generally lower than $0.2\ kg\ m^{-2}$ and SNOWIE campaign (Xue et al., 2022) which were generally lower than $0.6\ kg\ m^{-2}$.

Model simulations captured the range of variation of LWP in four cases (Cases 0a, 0b, 1a, 1b) (Figure 2). However, discrepancies were noted in other cases, with simulations slightly underestimating (Cases 0c, 0e, 0d, 1d) or overestimating (Case

220

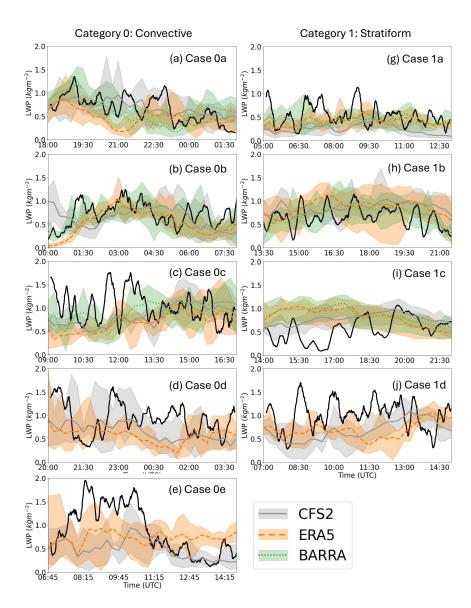


Figure 1. (a) Terrain map of the nested model domains for the ensemble simulations. The 4-km outer domain covers the large area of Southeast Australia, the 1-km inner domain covers the Snowy Hydro water catchment (outlined in black solid line). (b) The zoomed-in terrain map of the inner domain. The ground generators (black x's) are located on the western slope of the catchment. The target area within the catchment (dashed black line) is the region where seeding impacts on precipitation were expected across the domain. The precipitation gauges are shown in blue violet squares. The radiometer data was collected at the Cabramurra site (large cyan triangle), and atmospheric sounding data was collected at the Khancoban site (large cyan circle).

1c) LWP in specific time periods. These challenges highlight the inherent difficulties in accurately simulating SLW despite considering multiple model configurations. A highly variable LWP can be observed from the radiometer (e.g., Case 0c), while the model tends to produce a less variable LWP. This could be due to the factor that a 1-km grid may not capture the temporal variability originated from subgrid scale impacts at the single-point station site. Nevertheless, the model was able to capture the high SLW environments in the Snowy Mountains. Simulations driven by the high-resolution BARRA reanalysis data generally outperform ERA5 and CFSv2 in most cases, producing the best representation of LWP. For example in Cases 0b and 1b (Figure 2b,h), CFSv2 and ERA5 produced a significantly larger LWP bias at the beginning of the simulation, while the BARRA-driven members almost reproduced the observed trend, implying that BARRA provides a better initial and boundary conditions for advecting and producing supercooled liquid. One exception was Case 1c where both BARRA and ERA5 members produced moderately higher LWP in the first half of the simulation, and the CFSv2 members performed better (Figure 2i). In cases where BARRA data were not available, performance of CFSv2 and ERA5 were comparable with no dominant one outperforming the other.

Variations in CCN concentrations, PBL schemes, and IN schemes all contributed to ensemble spread but did not show consistent patterns (not shown). Among these factors, the initialization datasets exerted the most significant influence on LWP variability, emphasizing the importance of large-scale forcing in accurately capturing SLW.

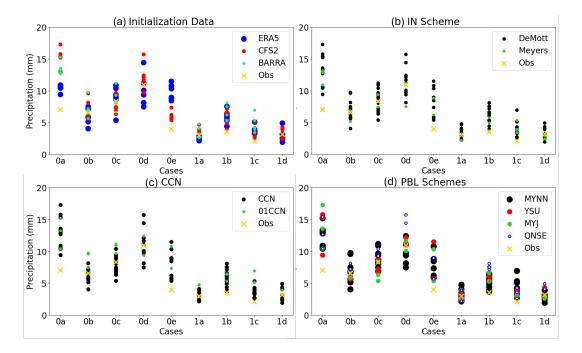


Figure 2. Time series of observed LWP (solid thick black lines) and simulated LWP (colored lines) at Cabramurra. The cases from the convective category are shown in the left column (a-e) and stratiform category in the right column (g-j). Individual model members are not shown for simplicity, and rather we emphasize the ensemble spread contributed by different initialization datasets. The shaded colors indicate the value ranges from the three initialization dataset member groups (six members from each group), with the ensemble mean shown in colored lines.

Figure 3. Exploded box plot of the ensemble spread of the accumulated precipitation averaged over the precipitation gauge sites for all cases from both categories. The observed gauge-site average accumulated precipitation for the same period is shown in golden "x". Each column in the plot denotes the spread of one case. Panels (a-d) show the ensemble spread contributed by varying four different model configurations: (a) initialization datasets, (b) IN schemes, (c) CCN concentrations, and (d) PBL schemes. Colors and symbols differentiate the model configurations.

3.1.2 Precipitation

225

230

Precipitation gauge observations across the Snowy Mountains water catchment provided a crucial dataset for evaluating the model's ability to replicate the spatial distribution, magnitude, and trends of precipitation as a result of complex dynamical, thermodynamical, and microphysical processes across scales. The ensemble spread of gauge site-averaged accumulated precipitation displays a good balance of member selection (i.e. an even spread by different configurations). Overall, the model captured the high precipitation trend in Category 0 cases and weak precipitation trend in Category 1 cases (Figure 3). The ensemble spread encompassed observed values in five cases (Cases 0b, 0c, 0d, 1a, and 1d), but the remaining four cases (Cases 0a, 0e, 1b, 1c) show that all members produce higher precipitation than observation. In most cases, the ensemble spread contributed by varying different model configurations does not show a universal bias pattern, and the dominant factors are case-specific. Among all factors, ice nucleation schemes contribute least to the model spread (Figure 3b).

Precipitation spread in Cases 0a and 0e was largely driven by the choice of initialization datasets, as the spread of accumulated precipitation is clustered around each driving datasets (Figure 3a). Nevertheless, no consistent bias pattern was found as to which driving dataset(s) produced the most realistic precipitation. For example, in Case 0a, CFSv2 members produced

235

240

245

250

255

260

265

higher precipitation and ERA5 members lower. The opposite trend was found in Case 0e. It was also found that different driving datasets produced a very similar range in ensemble spread in Category 1 (stratiform) cases.

In contrast, aerosol concentration contributed most to spread in Cases 0b, 0c, 1a, and 1c. In all four cases, reduced CCN conditions generally produced the highest precipitation among all members (Figure 3c). However, in cases where aerosol conditions are not the leading contributor, reducing CCN did not result in highest precipitation.

For Cases 0d, 1b, and 1c, PBL schemes had the greatest influence on the ensemble spread, though their influence is not consistent across cases. For example in Cases 0d and 1b, QNSE members produced the highest precipitation of all, and MYNN produced the least precipitation. However, Case 1c shows the opposite trend. And in Case 0c, MYJ produced the lowest precipitation while the difference from the other three schemes is small. In Cases 0e and 1a, the four PBL schemes produced a very similar spread.

The accumulated precipitation distribution from the control (no seed) simulations of both categories shows consistent spatial patterns, with maximum precipitation along the high terrain in the target area (see the white contour area in the terrain map of Figure 1b) and minimal precipitation in upwind and downwind regions. This pattern was consistent with the precipitation gauge observations (see colored circles in Figure 4). Standard deviation maps of the ensemble members also revealed a higher variation over the areas of maximum precipitation (right column in Figure 4). Nevertheless, the coefficient of variation in those areas was smaller than 1, i.e., the standard deviation is smaller than the ensemble mean, indicating that the ensemble spread was well constrained.

3.1.3 Cloud Vertical Structure and Atmospheric Stability

Sounding data from the Khancoban site (the cyan circle in Figure 1) provided profiles of temperature, humidity, and wind to evaluate the model's ability to replicate cloud vertical structure (e.g., cloud top height, cloud depth) and atmospheric stability (e.g., inversion layer and wind shear). The ensemble results demonstrate good agreement with the observed temperature profiles, instability layers, wind profiles, cloud depth, and cloud height (Figure 5). For Category 0 cases, the model captured the deeply convective cloud layer and unstable atmospheric conditions. For example, in Cases 0a and 0b (Figure 5a-b), a constant equivalent potential temperature (θ_e) and saturated relative humidity (RH) up to 6 km is seen in both observed and simulated profiles, indicating a well-mixed layer and a deep cloud layer topped at 6 km. For Category 1 cases, the model produced shallow clouds and a stable atmosphere. For example both Cases 1c and 1a show shallow cloud top around 3-4 km from the RH profile, and a negative lapse rate in e (Figure 5 c-d). Overall, the model tends to produce a smoother profile in temperature and wind than observations. The RH profiles exhibited significant variability and large deviation between model and observations, partly due to the RH sensor's dry bias within cloud layers. It was pointed out by Chen et al. (2023) that the RH sensor from DFM-09 sondes underestimates RH near saturation, which was a well-known issue for some other RH sensors as well (Vaisala RH sensor, Vömel et al., 2007) These sensor biases also influenced the equivalent potential temperature (e) as it was derived from both temperature and humidity profiles, contributing to low observational biases in the lower level when humidity is approaching saturation (e.g., Figure 5a,c and d).

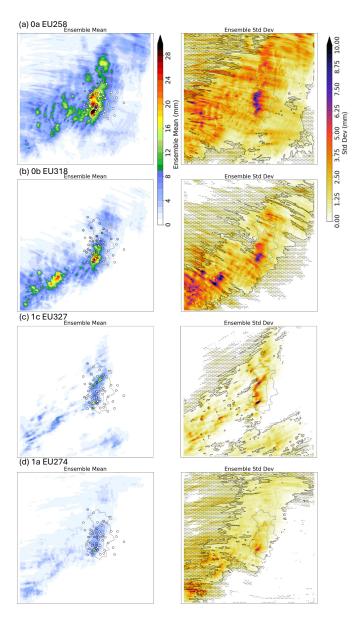
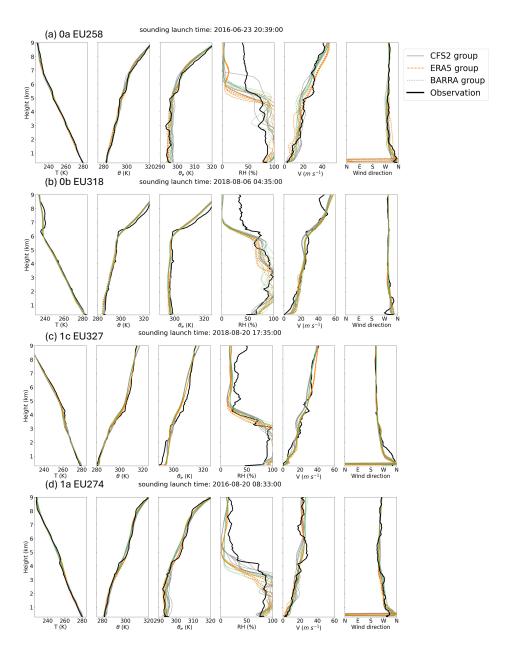



Figure 4. (Left column) ensemble mean of the accumulated precipitation field and (right column) the standard deviation of the ensemble members. The top two panels are from Category 0 (convective and high precipitation) and the bottom two panels are from Category 1 (stratiform and weak precipitation). From each category, one case with higher gauge-site average precipitation than observations (Panel (a): Case 0a; Panel (c) Case 1c) and one case with a comparable gauge-site average precipitation to observations(Panel (b) Case 0b; Panel (d) Case 1a) are selected, respectively. The color-filled circles indicate the observation from precipitation gauges. The hatched area in the standard deviation map indicates coefficient of variation (CV) > 1 (i.e., standard deviation > mean), and the area encircled by solid black line is the region with CV <= 1.

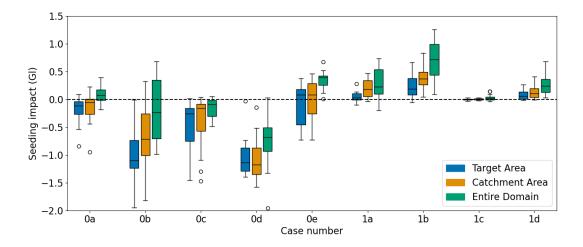


Figure 5. Observed (thick, solid, black lines) and simulated (thin, colored lines) sounding profiles at the Khancoban site during the four cases same as Figure. 4: (a) Case 0a with sounding launched at 20:39:00, June 23, 2016 and simulated sounding valid at 20:30:00, June 23, 2016, (b) Case 0b with sounding launched at 04:35:00, Aug 6, 2018 and simulated sounding valid at 04:30:00, Aug 6, 2018, (c) Case 1c with sounding launched at 17:35:00 Aug 20, 2018 and simulated sounding validated at 17:30:00, Aug 20, 2018, and (d) Case 1a with sounding launched at 08:33:00, Aug 20, 2018 and simulated sounding validated at 08:30:00, Aug 20, 2018.

Figure 6. Box plots showing ensemble spread of the simulated precipitation changes in volume (in gigalitres, Gl) due to seeding (Seeded - Non-seeded) over the target area (blue), water catchment (orange), and entire 1 km domain (green) for all cases from category 0 (left) and category 1 (right).

3.2 Ensemble Analysis of Simulated Seeding Effects

To evaluate the impacts of seeding across various model configurations, paired control (no seed) and seeding simulations were conducted for each ensemble configuration. The differences between the two simulations can then be utilized for quantification and spatial mapping of simulated seeding effects.

3.2.1 Precipitation Responses to Seeding

270

275

280

Figure 6 illustrates the ensemble spread of simulated precipitation changes (in gigalitres) due to seeding across target, catchment, and model domain area. Except for Case 1c showing weak seeding impacts, all cases exhibited strong inter-member variabilities, with larger inter-member variability observed in Category 0 (convective, deep clouds) cases compared to Category 1 (stratiform, shallow clouds) cases. Clear, opposite seeding impacts emerged between the two weather categories: category 1 cases consistently showed positive median seeding impacts across ensemble members, whereas category 0 cases exhibited negative median impacts within the target area, except for Case 0e. Notably, in Case 0e, the northern target area experienced precipitation reductions, while seeding the southern region saw increases, resulting in an overall positive median value (Figure 6. Idealized cloud seeding simulations by Geresdi et al. (2017) also found negative seeding impacts in most convective clouds and positive seeding in layered clouds (see Figure 10 in their paper). The negative impact in convective clouds was attributed to the weakened riming process as a result of an increased ice concentration and significantly reduced rimed water. Our simulations also show a more significant reduction in liquid-phase precipitation over the catchment area due to seeding in Category 0 cases than in Category 1 cases (see Case 0b and Case 1b as an example in Figure 7c, f), which results in a significant reduction

285

290

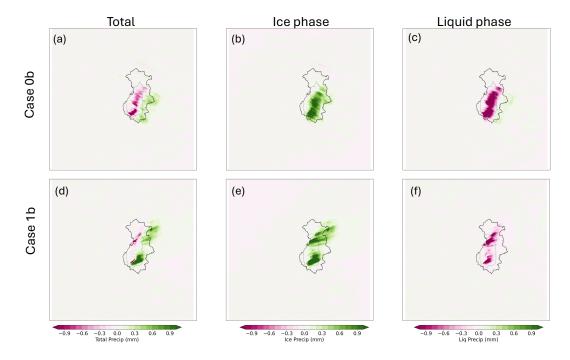
295

300

305

310

315


in the rimed water. The enhancement in ice-phase precipitation does not compensate for the reduction in liquid precipitation in the convective cases, resulting in an overall negative change in total precipitation reaching ground.

Model results show that the seeding impacted area can extend beyond the target area. Higher water volume gain or less water volume loss was simulated when downwind areas outside the target were included (Figure 6). Seeding resulted in a discernible downwind shift in precipitation (e.g., Figure 7a). This shift was associated with the active phase transformation of SLW into ice, which reduced liquid-phase precipitation and increased ice-phase precipitation (Figure 7b, c). Slower fall speeds of ice hydrometeors facilitate their transport further downwind, causing increased precipitation to the east of the target area and slight reductions in the upper wind area within the target area. This downwind shift in precipitation was more pronounced in Category 0 due to high winds and convective conditions, as can be seen in the less negative seeding impacts when including more downwind regions. In particular, Case 0a showed the interquartile range of seeding impacts shifted from negative over target area to positive over the 900m entire domain. The downwind shift was also present in Category 1 but to a lesser extent (see contrasts between Figures 7a and 7d). Therefore positive median values were observed in all three domains for all the Category 1 cases (Figure 6).

In addition, this downwind shift can also be complicated by the growth mechanism of ice hydrometeors. As snow falls slower than graupel, how seeding influences the riming processes, and how the model represents the riming efficiency also determines the partitioning of snow and graupel, which eventually affects the location of the precipitation that falls on the ground. Therefore, future studies regarding the sensitivity of the hydrometeor partitioning (snow vs graupel) and seeding impacts to the riming efficiency are needed to comprehend the model uncertainties. Furthermore, the convective, unstable conditions in Category 0 cases also generated more numerical noise. For instance, in Case 0a, the spatial distribution of precipitation changes was notably noisy (Figure S1). Overall, convective conditions are the least ideal for winter orographic cloud seeding, as the simulated seeding impacts are either mostly negative or noisy across the target area. The sensitivity of seeding impacts to aerosols varied by category. In Category 1, members with 10% of aerosol climatological concentration (01CCN) produced the strongest downwind shift of precipitation and therefore the weakest precipitation enhancement or even a slightly negative impact (Figure 8c). This is because the low CCN condition facilitates a more effective warm-rain process and inhibits ice-phase processes in natural conditions (see Figure 9b,c from CCN member in Case 1b and Figure 9e,f from its respective 01CCN member). Therefore, low CCN concentration resulted in a stronger seeding-induced phase transformation from liquid- to ice-phase precipitation, shifting the precipitation enhancement out of the target area (see contrasts between Figure 10a and 10d). In addition, the increase in ice precipitation in 01CCN members was offset by an even stronger reduction in liquid precipitation. Nevertheless, the seeding impacts are less sensitive to aerosol concentrations in Category 0 (Figure 8c), where no obvious low/high bias was seen. This implies that aerosol impacts in glaciogenic seeding in deep, convective clouds might not be important compared to stratiform conditions. The seeding impacts also exhibited sensitivity to the ice nucleation schemes. Compared to the DeMott scheme, the Meyers scheme, which assumes a constant INP concentration and only depends on temperature, tends to produce less negative seeding impacts in Category 0 cases, but no consistent pattern was found in Category 1 cases (Figure 8b). The Meyers scheme has a much higher nucleation efficiency and creates higher ice concentrations in natural (no seed) conditions. This reduced the SLW and inhibited the already active ice precipitation processes

Figure 7. The changes in accumulated precipitation (SEED-CTRL) due to seeding for (a, d) total, (b, e) ice-phased, and (c, f) liquid-phase precipitation for Case 0b and Case 1b (see labels on the left side). The target area is outlined in grey thin line, and the Snowy water catchment is outlined in black line.

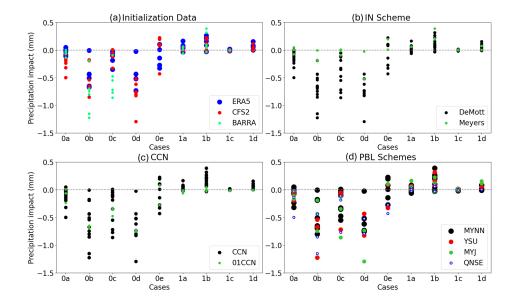


Figure 8. Same as Figure 3 but for the ensemble spread of the seeding impact in accumulated precipitation averaged over the target area.

320

325

330

335

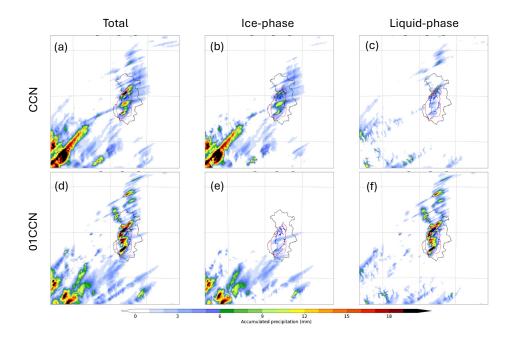
340

345

350

in Category 0 cases, resulting in a suppressed liquid-phase precipitation in natural condition and a reduced ice-precipitation enhancement by seeding. Therefore, Meyer schemes generated weaker seeding-induced precipitation changes. This trend was also found in the case study by Chen et al. (2023, Figure 9 of their paper).

Large-scale forcings (initialization datasets) contribute significantly to the ensemble spread, in particular in Category 0 cases. The spread is found largely clustered by datasets (Figure 8a). For instance, in Case 0c, BARRA-driven members showed significantly high negative seeding effects (light green dots in Figure 8a), and the difference between ERA5 and CFSv2 was less significant. This is because in this case BARRA-driven members produced moderately more liquid-phase precipitation and much less ice-precipitation in the catchment in natural (no seed) conditions. This consequently caused a strong seedinginduced precipitation phase conversion from liquid to ice. Ultimately, that paired with a strong wind resulted in a reduction in total precipitation within the target area and an increase to the east of the area. In contrast, weaker seeding effects were seen in the ERA5 and CFSv2 members. Due to less liquid phase precipitation in the natural condition and more pre-existing natural ice processes, less phase conversion was noted. In Case 0d, only one CFSv2 member (CFS2 CCN DeMott MYJ) produced substantially more negative impact than the rest of the members, and one ERA5 member produced the least negative impact (ERA5 CCN Meyers MYNN). The rest of the members within those groups shared a similar range of spread. As a result, the precipitation pattern changes due to seeding is largely similar between the two datasets. In Case 0e where about half the members produced negative seeding impacts and the other half positive (Figure 8a), initialization datasets were the dominant factor in determining the sign of seeding impacts: most CFSv2 members produced positive seeding impacts, and most ERA5 members see a negative seeding impact. This demonstrates that in the high wind conditions, the initialization datasets providing the prevailing wind fields are critical in dispersing AgI, transporting precipitating hydrometeors, and finally determining the impacted seeding area. In addition, whether riming is efficient in seeded and unseeded clouds highly depends on the availability of the supercooled liquid water (SLW), which is also mostly sensitive to the driving datasets, as demonstrated in Section 3.1.1. Finally, the spread caused by different PBL schemes appeared evenly distributed across the seeding impact range and no obvious common patterns can be found across the cases.


3.2.2 AgI Dispersion and Impacts on Cloud Profiles

To better understand the cloud response to seeding at a process level, vertical cross-sections along the prevailing wind direction were analyzed for each case. These cross-sections include a northern transect passing through the Cabramurra site and a southern transect intersecting the Khancoban site (Figure 11). The transects were selected based on the prevailing wind direction unique to each case, ensuring alignment with the dominant meteorological flow patterns.

On the one hand, the high terrain on the west side created a barrier for the west-to-east transportation of the AgI from the ground-based generators. On the other hand, less ground generators are deployed in the middle of the target compared to the north and the south. Both factors contribute to a low concentration in the centre of the target area (see Figure 11 of the dispersion of AgI particles over the domain for Case 0b and Case 1b). Consequently, the seeding-affected region split into northern and southern sections for most of the cases, as shown in Figure 7. In addition, most of the southern ground generator

Figure 9. Same as Figure 7 but for the accumulated precipitation from Case 1b's Member 1 (ERA5_CCN_DeMott_MYNN, labeled as CCN) and member 5 (ERA5_01CCN_DeMott, labeled as 01CCN).

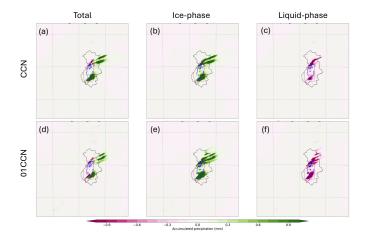


Figure 10. Same as Figure 9 but for the changes in accumulated precipitation due to seeding (SEED - CTRL).

355

360

365

370

375

380

385

sites are located at a lower elevation compared to the northern sites, and thus the released seeding particles were easier to be locally trapped in the valley, as can be seen in the highly concentrated value near the southern sites in Figure 11 and Figure S3. Supercooled liquid water was primarily located on the west side of the catchment (see the distribution of LWP for case 1b n Figure S2). Although AgI particles could travel further east in the atmosphere (see AgI dispersions after three hours in Figure 11b,d), their downstream cloud impacts were minimal. This is also supported by distribution of precipitation changes in Figure 7, and most of the enhanced precipitation happening outside the catchment was attributed to phase-transformation-induced precipitation shift discussed above, rather than the direct effects of seeding material on downstream clouds.

It is also noticeable that there are clearly two distinct prevailing wind patterns between the Category 0 and 1 cases. The convective cases from Category 0 were primarily dominated by northwestern winds, and in stratiform cases from Category 1, westerly or southwesterly winds prevail (See Figure 11 for the AgI dispersion of Case 0b and 1b; see also Figure S3 for the AgI dispersion of all cases). Clearly, the prevailing winds not only provide distinct large-scale forcings to the storms, but also strongly influence how the air flow interacts with the terrain and thus the turbulent-mixing and transport of cloud particles within the atmospheric boundary layer. It is noticed that negative seeding impacts are strongly associated with northwesterly winds. In Category 0, where Case 0a and Case 0e show more westerly winds, slightly less negative or even positive impacts were seen (Figure 6). Vertical cross-sections of clouds and AgI dispersion reveal details in microphysical response to seeding. The condition for which AgI particles effectively nucleate ice to enhance the precipitation within the target area depends on a few critical factors. For example whether the wind is strong enough to transport AgI particles to the optimal temperature zone (~ -7 to -15 °C), but not too strong to blow them away from the target area before the seeding impacts occur, whether sufficient amounts of supercooled liquid are present in the clouds, and how active the natural ice process is already to generate ice-phase precipitation processes. It can be seen that even within the same storm, cloud profiles can vary significantly in time and space due to the complicated interaction between AgI, clouds, and the complex terrain. For example, Case 0b sees generally negative seeding impacts from the accumulated precipitation either over the target area or over the catchment (Figure 6). Nevertheless, enhancement in ice precipitation can be seen in the northern transect with no reduction in liquid precipitation within the catchment (Figure 12(a2)).

In addition, cloud profiles vary significantly between the northern and southern catchment. For example in Case 1b, the northern transect shows significant seeding impacts (Figure 12(c2)). The abundant supercooled liquid with cloud top temperature between -15 and -20 °C (Figure 12(c1)) led to extensive downwind spread of nucleated ice by AgI (Figure 12(c3)). A high concentration of cloud ice formed between -10 °C and -15 °C, and the enhanced graupel and snow formation happened below the ice layer. Contrary to the control (no seed) simulation where rain was predominant between 40 km and 60 km distance in the cross-section (green contour in Figure 12 (c1)), the seeding completely suppressed liquid phase processes and converted cloud water and rain into ice precipitation falling in the 40-80 km distance, extending approximately 40 km further downwind. This further supports the finding that seeding transforms liquid precipitation to ice precipitation, which is transported further downwind. For the southern transact, the seeding impact is less pronounced due to the pre-existing active ice precipitation processes in the control simulation (Figure 12(d1)). Regardless of cloud ice formation on the eastern edge of the cloud near 40 km distance, this enhanced ice production does not lead to precipitation enhancement reaching the ground (Figure 12 (d2)).

390

395

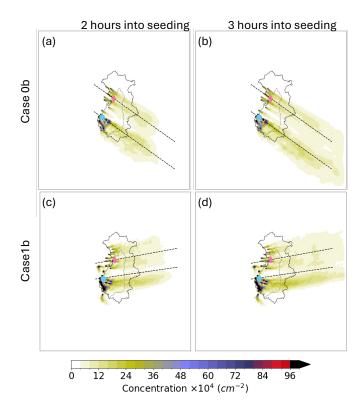


Figure 11. The ensemble mean of AgI dispersion over the domain from (a-b) Case 0b and (c-d) Case 1b. The value indicates vertically integrated AgI concentration (cm^{-2}) . The left column (a,c) is from two hours after seeding starts, the right column (b,c) is from three hours after seeding starts. The dashed lines represent two transects along the prevailing wind of the cases: one from northern catchment passing through the Cabramurra site (red dot in the domain), referred to as the northern transect, and the other from southern catchment passing the Khancoban site (blue dot in the domain), referred to as the southern transect. The target area is marked in gray lines and the water catchment is in black lines.

Overall, seeding produced ice further downwind in the northern region (see white contour lines in (a3), (c3) in Figure 12 and 13) compared to the southern region (see (b3), (d3) in Figure 12 and 13). This resulted in a more widely spread seeding impact along wind in the north (Figures 7 and 10). While in the southern region, the nucleated ice stays primarily within the target area. It is also evident that the cloud response to seeding and AgI transport are also sensitive to the large-scale forcing, and using different initialization datasets lead to differences in natural supercooled liquid cloud profiles, AgI transportation and thus the changes in clouds precipitation due to seeding (see differences between the results of ERA5-driven member results in Figure 12 and BARRA-driven member in Figure 13). Using different PBL schemes also result in different AgI dispersion profiles and cloud profiles (not shown here). Therefore, the ensemble approach which considers the range of uncertainties from variations in model setups is critical for a systematic evaluation of the seeding impacts, rather than relying on a single model output.

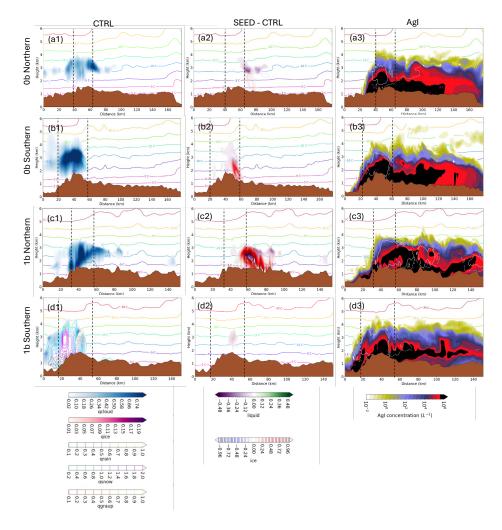


Figure 12. Vertical cross-section along the prevailing wind of (a1-d1) the cloud hydrometeor mixing ratio profiles, (a2-d2) the cloud hydrometeor mixing ratio changes ($g \ kg^{-1}$) due to seeding (SEED - CTRL), and (a3-d3) total concentration of AgI two hours after seeding starts in the ensemble member of ERA5_CCN_DeMott_MYNN (member 1 in Table 1). The vertical dashed black lines indicate the border of the target area. AgI carried by cloud ice is displayed in white contour lines, where dashed white contour indicates area with concentration of AgI carried by ice $> 0.01 \ L^{-1}$, and solid white contour shows area with concentration of AgI carried by ice $> 100 \ L^{-1}$. From top to bottom are the cross-sections from northern transact in Case 0b, southern transact in Case 1b, and southern transact in Case 1b, respectively. The northern and southern transacts from Case 0b and 1b are indicated in Figure 11

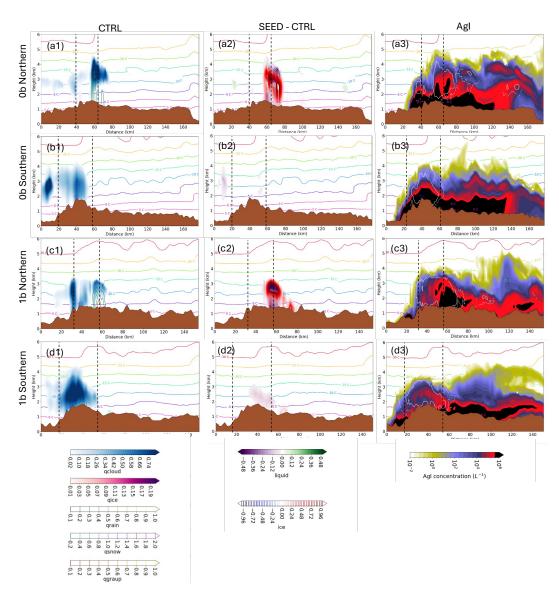


Figure 13. Same as Figure 12, but for the ensemble member of BARRA_CCN_DeMott_MYNN (member 13 in Table 1).

In conclusion, category 1 cases showed general precipitation increases over the target area across the ensemble members; and category 0 cases lead to reductions or relocations of precipitation that resulted in generally reduced precipitation over the target areas. The terrain also played a role in AgI dispersion. High western terrain blocked AgI transport into certain areas, leading to spatial variability in seeding impacts. These process-level analyses highlight the complex interplay between meteorology, terrain, and seeding efficacy.

4 Conclusions

405

410

420

425

This study builds upon previous work to systematically evaluate glaciogenic cloud seeding impacts over the Snowy Mountains using an ensemble modeling framework. By incorporating 18 ensemble members with varied model configurations and initialization datasets, including the novel use of the BARRA dataset, this research investigates the seeding impacts under two dominant wintertime meteorological regimes.

The analysis also highlights the importance of including multiple initialization datasets to capture the range of model uncertainties. It is found that BARRA-driven simulations generally outperform ERA5 and CFSv2 in representing supercooled liquid water. The BARRA has demonstrated to be a reliable reanalysis dataset to drive WRF, which also shows potential for retrospective numerical simulations for other regions in Australia, New Zealand, and SE Asia in the future.

In addition to the initialization datasets, aerosol and PBL variations also largely contributed to ensemble spread. In most cases, the ensemble spread contributed by varying different model configurations does not show a universal bias pattern, and the dominant factors are case-specific. For example, driving datasets contribute to the largest model uncertainties in Cases 0a and 0e, while changing aerosol concentration leads to the largest ensemble spread in Cases 0b, 0c, 1a, and 1c, changing aerosol concentrations and 01CCN concentration members produced the highest precipitation in those cases. However, 01CCN members in other cases do not show this high bias. In Cases 0d, 1b, and 1c, PBL schemes are the dominant contributor to the ensemble spread. This implies that the leading uncertainty of the model can differ in different meteorological conditions, indicating the importance to use ensemble approaches to appropriately account for the range of uncertainty. Compared to other factors, ice nucleation schemes contribute least to the model spread.

Comparison between the seeded and control (no seed) simulations indicates that the seeding impacts vary significantly among the members and across different cases, with clear, distinctive patterns in the two storm categories. Category 0 cases, with deep, convective clouds and active precipitation processes, are considered the least ideal for cloud seeding, with four out of five cases showing mean negative seeding impacts over the target area. The high wind condition in Category 0 cases facilitates the downwind transportation of the seeding-converted, slow-falling ice-phase hydrometeors, leading to precipitation enhancement outside the target area. It was also found that seeding inhibited the already efficient ice-precipitation processes, likely with strong riming, in those cases by increasing ice concentration and reducing the rimed water. Category 1 cases, which feature stable, stratiform conditions and weak precipitation, show seeding enhancement in simulated mean precipitation over the target area for all cases. It was also noted that an extremely clean environment (10% of aerosol climatology) could hamper

430

435

440

445

450

455

the precipitation enhancement. This is because pristine environments result in less supercooled droplet concentrations and more efficient removal of supercooled liquid through warm-rain processes in natural conditions.

Regardless of the opposite seeding signals from the two categories, the high degree of variability between ensemble members in all cases except Case 1c indicates that simulated cloud seeding response is highly sensitive to both large-scale forcing and model configurations. Ensemble analysis indicates that there is no single model configuration that optimally represents all cases/categories. Even within the same meteorological regime, opposite model biases can be found in different cases using the same ensemble configuration due to the complex physical processes involved. Therefore, interpreting model results from a single model configuration should be done with caution. This supports the need to use ensemble approaches for assessing the cloud seeding impacts.

Previous evaluations of the cloud seeding impact in the Snowy Mountains have demonstrated an overall positive and statistically significant seeding impact based on traditional statistical analysis using precipitation observations from a network of precipitation gauges and multi-year randomised seeding statistics (Manton and Warren, 2011; Manton et al., 2017; Smith et al., 1963; Smith, 1967). This numerical study supports findings from previous statistical analysis which also show significant variability in seeding impacts, for example, Smith et al. (1963) shows that the seeding impacts over Snowy Mountains varied significantly from year to year. Our numerical studies indicate that such variability highly depends on differences in meteorological factors, such as cloud types and prevailing winds associated with individual weather events. This analysis complements previous efforts by providing storm-specific seeding impacts and variability, which will ultimately support the identification of favorable seeding conditions in a weather modeling framework. However, the differences between these statistical and simulation assessment methods pose challenges in conducting consistent and comprehensive comparisons of the seeding impacts. To address this, conducting seasonal or even multi-year ensemble simulations that include all seeding cases during the study period will be essential for accurately quantifying overall seeding impacts. Additionally, developing a comprehensive storm climatology (including storm categories, frequency, and trends) over the region will further aid in assessing and predicting the climatology of seeding impacts.

In addition, detailed investigations will be needed to quantify the sensitivity to certain microphysical processes for better constraining the ensemble spread, as well as better understanding the seeding mechanism in the complex mixed-phase cloud environment. For example, how seeding impacts are modulated by the riming efficiency used in the microphysical scheme in different weather conditions and thus determine the fraction of rimed and unrimed snow and graupel in the precipitation. This will be critical because riming significantly affects the hydrometeor's density and fall speed and therefore the transport and relocation of precipitation.

Data availability. The model output data is stored in the Amazon Web Service (AWS) S3 storage. Due to the large size of the ensemble simulation dataset, the data will be available only upon request.

Author contributions. SC and LX contributed to the development of the methodology and determination of the ensemble members. TC, AP, SK, and JP prepared and quality controlled the observational datasets. SC ran the simulation, conducted the data analysis, created figures, transferred data to AWS S3, and wrote the initial draft of the manuscript. ST and TC provided guidance and oversight for the project. JW was responsible for managing and coordinating the research project. BP set up the AWS cloud platform and tested the WRF-WxMod at the initial phase and provided technical support during the ensemble simulation. All authors contributed to the discussion and interpretation of results and to the review and editing of the manuscript.

Competing interests. The authors declare no competing interests

Acknowledgements. This research was supported by Snowy Hydro Ltd. This material is partially based upon work supported by the NSF National Center for Atmospheric Research (NCAR), which is a major facility sponsored by the U.S. National Science Foundation under Cooperative Agreement No. 1852977.

470 References

485

490

- Chen, S., Xue, L., Tessendorf, S., Chubb, T., Peace, A., Ackermann, L., Gevorgyan, A., Huang, Y., Siems, S., Rasmussen, R., and Kenyon, S.: Simulating Wintertime Orographic Cloud Seeding over the Snowy Mountains of Australia, Journal of Applied Meteorology and Climatology, 62, 1693–1709, https://doi.org/10.1175/JAMC-D-23-0012.s1, 2023.
- DeMott, P. J., Prenni, A. J., Liu, X., Kreidenweis, S. M., Petters, M. D., Twohy, C. H., Richardson, M. S., Eidhammer, T., and Rogers, D. C.:

 Predicting global atmospheric ice nuclei distributions and their impacts on climate, Proceedings of the National Academy of Sciences,
 107, 11 217–11 222, https://doi.org/10.1073/pnas.0910818107, 2010.
 - Flossmann, A. I., Manton, M., Abshaev, A., Bruintjes, R., Murakami, M., Prabhakaran, T., and Yao, Z.: Review of advances in precipitation enhancement research, Bulletin of the American Meteorological Society, 100, 1465–1480, 2019.
- French, J. R., Friedrich, K., Tessendorf, S. A., Rauber, R. M., Geerts, B., Rasmussen, R. M., Xue, L., Kunkel, M. L., and Blestrud, D. R.:

 480 Precipitation formation from orographic cloud seeding, Proceedings of the National Academy of Sciences, 115, 1168–1173, 2018.
 - Geresdi, I., Xue, L., and Rasmussen, R.: Evaluation of Orographic Cloud Seeding Using a Bin Microphysics Scheme: Two-Dimensional Approach, Journal of Applied Meteorology and Climatology, 56, 1443–1462, https://doi.org/10.1175/JAMC-D-16-0045.1, 2017.
 - Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., and Simmons, A.: The ERA5 global reanalysis, Quarterly Journal of the Royal Meteorological Society, 146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020.
 - Hong, S., Noh, Y., and Dudhia, J.: A New Vertical Diffusion Package with an Explicit Treatment of Entrainment Processes, Monthly Weather Review, 134, 2318–2341, https://doi.org/10.1175/MWR3199.1, 2006.
 - Hu, Y., Rodier, S., Xu, K. M., Sun, W., Huang, J., Lin, B., Zhai, P., and Josset, D.: Occurrence, liquid water content, and fraction of supercooled water clouds from combined CALIOP/IIR/MODIS measurements, Journal of Geophysical Research, 115, 1–13, https://doi.org/10.1029/2009JD012384, 2010.
 - Huang, Y., Chubb, T., Baumgardner, D., deHoog, M., Siems, S. T., and Manton, M. J.: Evidence for secondary ice production in Southern Ocean open cellular convection, Quarterly Journal of the Royal Meteorological Society, 143, 1685–1703, 2017.
 - Huang, Y., Siems, S. T., and Manton, M. J.: Wintertime in situ cloud microphysical properties of mixed-phase clouds over the Southern Ocean, Journal of Geophysical Research: Atmospheres, 126, e2021JD034832, 2021.
- Huggins, A. W., Kenyon, S. L., Warren, L., Peace, A. D., Bilish, S. P., and Manton, M. J.: The snowy precipitation enhancement research project: a description and preliminary results, Journal of Weather Modification, 40, 28–53, 2008.
 - Janjić, Z. I.: The Step-Mountain Coordinate: Physical Package, Monthly Weather Review, 118, 1429–1443, https://doi.org/10.1175/1520-0493(1990)118<1429:TSMCPP>2.0.CO;2, 1990.
- Manton, M., Peace, A., Kemsley, K., Kenyon, S., Speirs, J., Warren, L., and Denholm, J.: Further analysis of a snowfall enhancement project in the Snowy Mountains of Australia, Atmospheric Research, 193, 192–203, 2017.
 - Manton, M. J. and Warren, L.: A confirmatory snowfall enhancement project in the Snowy Mountains of Australia. Part II: Primary and associated analyses, Journal of Applied Meteorology and Climatology, 50, 1448–1458, 2011.
 - Marcolli, C., Nagare, B., Welti, A., and Lohmann, U.: Ice nucleation efficiency of AgI: review and new insights, Atmospheric Chemistry and Physics, 16, 8915–8937, 2016.
- Meyers, M. P., DeMott, P. J., and Cotton, W. R.: New primary ice-nucleation parameterizations in an explicit cloud model, Journal of Applied Meteorology, 31, 708–721, https://doi.org/10.1175/1520-0450(1992)031<0708:NPINPI>2.0.CO;2, 1992.

540

- Morrison, A., Siems, S., and Manton, M.: A three-year climatology of cloud-top phase over the Southern Ocean and North Pacific, Journal of Climate, 24, 2405–2418, 2011.
- Nakanishi, M. and Niino, H.: Development of an improved turbulence closure model for the atmospheric boundary layer, Journal of the Meteorological Society of Japan. Ser. II, 87, 895–912, https://doi.org/10.2151/jmsj.87.895, 2009.
 - Rasmussen, R., Tessendorf, S., Xue, L., Weeks, C., Ikeda, K., Landolt, S., Breed, D., Deshler, T., and Lawrence, B.: Evaluation of the Wyoming Weather Modification Pilot Project (WWMPP) using two approaches: Traditional statistics and ensemble modeling, Journal of Applied Meteorology and Climatology, 57, 2639–2660, 2018.
- Saha, S., Moorthi, S., Wu, X., Wang, J., Nadiga, S., Tripp, P., Behringer, D., Hou, Y. T., Chuang, H. Y., Iredell, M., and Ek, M.: The NCEP Climate Forecast System Version 2, Journal of Climate, 27, 2185–2208, https://doi.org/10.1175/JCLI-D-12-00823.1, 2014.
 - Shaw, D. and King, W.: Report of a feasibility study to assess potential for a cloud seeding experiment over the catchment of the Snowy Mountains Scheme, Siromath Project No. SMC/N86/1, 1986.
 - Skamarock, W. C., Klemp, J. B., Dudhia, J., Gill, D. O., Barker, D. M., Duda, M. G., Huang, X. Y., Wang, W., and Powers, J. G.: A description of the advanced research WRF version 3, NCAR technical note, 475, 10–5065, https://doi.org/10.5065/D68S4MVH, 2008.
- 520 Smith, E., Adderley, E., and Walsh, D.: A cloud-seeding experiment in the Snowy Mountains, Australia, Journal of Applied Meteorology and Climatology, 2, 324–332, 1963.
 - Smith, E. J.: Cloud seeding experiments in Australia, in: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Volume 5: Weather Modification, vol. 5, pp. 161–177, University of California Press, 1967.
- Su, C.-H., Eizenberg, N., Steinle, P., Jakob, D., Fox-Hughes, P., White, C. J., Rennie, S., Franklin, C., Dharssi, I., and Zhu, H.: BARRA v1.0: the Bureau of Meteorology Atmospheric high-resolution Regional Reanalysis for Australia, Geoscientific Model Development, 12, 2049–2068, https://doi.org/10.5194/gmd-12-2049-2019, 2019.
 - Sukoriansky, S., Galperin, B., and Perov, V.: Application of a New Spectral Theory of Stably Stratified Turbulence to the Atmospheric Boundary Layer over Sea Ice, Boundary-Layer Meteorology, 117, 231–257, https://doi.org/10.1007/s10546-004-6848-4, 2005.
- Tessendorf, S., French, J., Friedrich, K., Geerts, B., Rauber, R., Rasmussen, R., Xue, L., Ikeda, K., Blestrud, D., Kunkel, M., and Parkinson,
 S.: A transformational approach to winter orographic weather modification research: The SNOWIE project, Bulletin of the American Meteorological Society, 100, 71–92, 2019.
 - Thompson, G. and Eidhammer, T.: A study of aerosol impacts on clouds and precipitation development in a large winter cyclone, Journal of the atmospheric sciences, 71, 3636–3658, 2014.
- Vömel, H., Selkirk, H., Miloshevich, L., Valverde-Canossa, J., Valdés, J., Kyrö, E., Kivi, R., Stolz, W., Peng, G., and Diaz, J.: Radiation dry bias of the Vaisala RS92 humidity sensor, Journal of Atmospheric and Oceanic Technology, 24, 953–963, 2007.
 - Warburton, J. A. and Wetzel, M. A.: Field study of the potential for winter precipitation enhancement in the Australian Snowy Mountains, Atmospheric Research, 28, 327–363, 1992.
 - Xue, L., Hashimoto, A., Murakami, M., Rasmussen, R., Tessendorf, S. A., Breed, D., Parkinson, S., Holbrook, P., and Blestrud, D.: Implementation of a Silver Iodide Cloud-Seeding Parameterization in WRF. Part I: Model Description and Idealized 2D Sensitivity Tests, Journal of Applied Meteorology and Climatology, 52, 1433–1457, 2013a.
 - Xue, L., Tessendorf, S. A., Nelson, E., Rasmussen, R., Breed, D., Parkinson, S., Holbrook, P., and Blestrud, D.: Implementation of a Silver Iodide Cloud-Seeding Parameterization in WRF. Part II: 3D Simulations of Actual Seeding Events and Sensitivity Tests, Journal of Applied Meteorology and Climatology, 52, 1458–1476, 2013b.

Xue, L., Weeks, C., Chen, S., Tessendorf, S. A., Rasmussen, R. M., Ikeda, K., Kosovic, B., Behringer, D., French, J. R., Friedrich, K.,
 and Zaremba, T. J.: Comparison between observed and simulated AgI seeding impacts in a well-observed case from the SNOWIE field program, Journal of Applied Meteorology and Climatology, 61, 345–367, https://doi.org/10.1175/JAMC-D-21-0103.1, 2022.